


Fig. 1—VSWR characteristics of the prototype ferrite phase shifter.

### K<sub>a</sub>-Band Ferrite Phase Shifter\*

In 1957, Reggia and Spencer<sup>1</sup> utilized a new technique to develop a phase shifter at 9.1 kMc. This letter reports an extension of their technique to  $K_a$ -band frequencies. A maximum figure of merit of 1100 degrees of phase shift per db of loss has been achieved at  $35 \text{ kMc} \pm 500 \text{ Mc}$ .

#### SELECTION OF THE FERRITE

For a Reggia-Spencer phase shifter the variation in  $\mu'$  from zero applied field to saturation determines the amount of phase shift for a given geometry.<sup>2</sup> This difference in  $\mu'$  generally increases as the saturation magnetization ( $4\pi M_s$ ) increases; hence  $4\pi M_s$  should be relatively high. However, materials with a high  $4\pi M_s$  have been found to increase the loss of the device at very low applied fields. A practical value is  $4\pi\gamma M_s/\omega < 0.5$  or  $4\pi M_s < 6250$  oersteds at 35 kMc. In addition, the ferrite should have a small dielectric loss tangent and a narrow resonance linewidth for minimum insertion loss.

A nickel ferrite with a linewidth of 100 oersteds and a  $4\pi M_s$  of 5000 gauss was selected because of its availability and superior performance. Other materials with  $4\pi M_s$  as low as 3300 gauss were tested and found to yield less phase shift and a lower figure of merit.

#### PHASE-SHIFTER DESIGN

Two dimensions are critical for a Reggia-Spencer phase shifter. These are: 1) the narrow dimension of the waveguide and 2) the diameter of the ferrite rod. The rectangular waveguide has the function of coupling a TE<sub>10</sub> mode into and out of the ferrite rod; hence, its narrow dimension must be small enough to prevent Faraday rotation in the ferrite-loaded region. A maxi-

\* Received by the PGM TT, January 30, 1961. This work was supported by Wright Air Dev. Div. Aerial Reconnaissance Lab., Contract AF33(616)-5499.

<sup>1</sup> F. Reggia and E. G. Spencer, "A new technique in ferrite phase shifting for beam scanning of microwave antennas," Proc. IRE, vol. 45, pp. 1510-1517; November, 1957.

<sup>2</sup> J. A. Weiss, "A phenomenological theory of the Reggia-Spencer phase shifter," Proc. IRE, vol. 47, pp. 1130-1137; June, 1959.

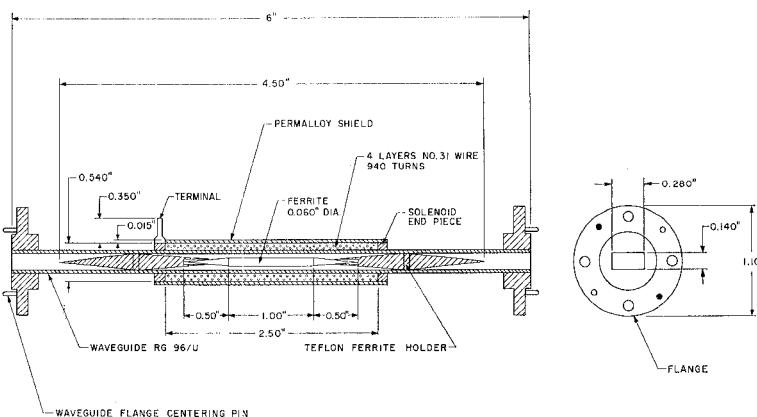



Fig. 2—Assembly drawing of the  $K_a$ -band phase shifter.

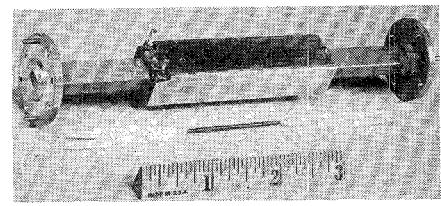



Fig. 3—Photograph of the  $K_a$ -band ferrite phase shifter.

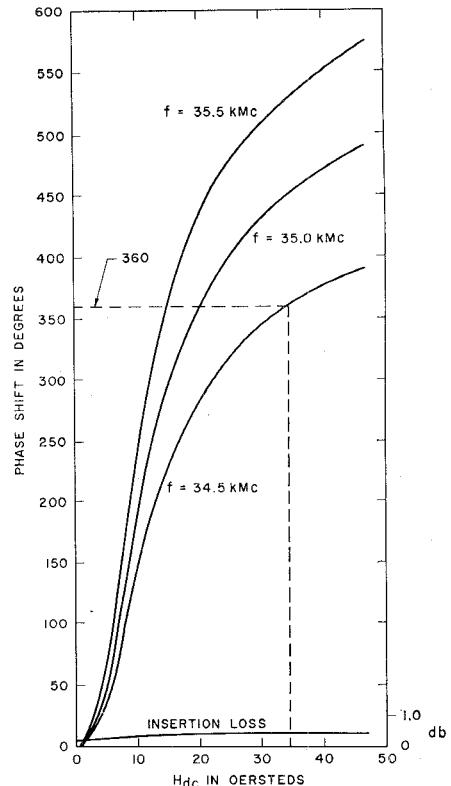



Fig. 4—Phase shift and loss characteristics of the  $K_a$ -band ferrite phase shifter.

R. S. McCARTER  
E. F. LANDRY  
Bell Telephone Labs., Inc.  
Whippany, N. J.

<sup>3</sup> S. A. Schelkunoff, "Electromagnetic Waves," D. van Nostrand Co., Inc., New York, N. Y., Sec. 10.20; 1943.